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Effects of random fields in an antiferromagnetic Ising spin glass
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The effects of random fields on the two-sublattice infinite-ranged Ising spin-glass model are investigated.
This model is expected to be appropriate as a mean-field description of antiferromagnetic spin glasses such as
FexMn12xTiO3. Within replica-symmetric calculations, we study the influence of Gaussian and bimodal ran-
dom fields on the phase transitions and phase diagrams. It is shown that, in the presence of random fields, the
first-order transitions are weakened and may become continuous. Also, the antiferromagnetic phases are always
destroyed by sufficiently strong random fields. A qualitative comparison with existing experimental results and
the limitations of the present calculations are discussed.

PACS number~s!: 05.50.1q, 64.60.2i, 75.10.Nr, 75.50.Lk
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I. INTRODUCTION

Experimental works carried out in diluted antiferroma
nets~e.g., FexMg12xCl2 @1–3#! and in mixed antiferromag
netic compounds~e.g., FexMn12xTiO3 @4,5#! show evidences
of spin-glass behavior for certain range ofx values. Within
such concentration ranges, these systems may be regard
Ising short-ranged spin glasses: the competing short-ra
ferromagnetic and antiferromagnetic interactions are resp
sible for frustration, while the strong uniaxial anisotrop
keeps the spins aligned along the axial direction. A tw
sublattice version of the infinite-ranged Sherringto
Kirkpatrick ~SK! spin-glass model@6# was proposed@7–10#,
as a mean-field theory to explain the antiferromagnetic
spin-glass orderings observed in these systems. The tr
tion to the antiferromagnetic phase is characterized by
onset of the staggered magnetization@11#, whereas the tran
sition to the spin-glass phase is signaled by the instability
the replica-symmetric solution@12#. In the spin-glass phas
the appropriate solution has a broken replica symme
@13,14#, describing a nonergodic situation, with a free-ene
profile with many valleys separated by large barriers. Th
experimentally the transition to the spin-glass phase is o
identified with the occurrence of irreversibility and hyste
esis. Experimental determination of the field-temperat
phase diagram in FexMn12xTiO3 @15#, as well as the de
Almeida-Thouless instability line@12#, are in qualitative
agreement with mean-field results@10#.

Random fields are generated in diluted antiferromagn
through the application of an external uniform magnetic fi
@16,17#. Indeed, both spin-glass@1# and random-field@18#
behaviors have been reported in FexMg12xCl 2. The mixed
compound FexMn12xTiO3 is not diluted, but it has been ar
gued that the imbalance between the magnetic momen
Fe and Mn will also generate an effective random field@15#.
In contrast to these systems, the diluted antiferromag
FexZn12xF2 presents almost no frustration and only t
random-field behavior was observed at small dilutions@19#.
However, according to recent theoretical investigatio
PRE 611063-651X/2000/61~5!/4760~9!/$15.00
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@20,21#, small frustration plays an important role at high d
lutions, leading to the occurrence of spin-glass behavior
reported by experimental studies@22,23#.

Such considerations motivated us to study the effects
random fields on the two sublattice SK model@7–10#. In
particular, we will be interested in the effects of the rando
fields on the phase transitions and phase diagrams of
model. For the sake of simplicity, the random interactio
and random fields will be treated as independent rand
variables, even though this does not represent an accu
physical picture, since both randomnesses have a com
origin. Our analytical results are valid for arbitrary distrib
tions of random fields, although in the numerical calculatio
we will restrict ourselves to the Gaussian and bimodal d
tributions.

II. THE MODEL

Let us consider a set of Ising spinsSi561 located at the
sites of two identical sublatticesA andB, each containingN
sites. The model is defined by the Hamiltonian

H5 (
i PA, j PB

Ji j SiSj2 (
( i j )PA

Ji j8 SiSj

2 (
( i j )PB

Ji j8 SiSj2(
i

HiSi , ~2.1!

where the first sum applies to all distinct pairs of spins b
longing to different sublattices, the second and third on
refer to all distinct pairs of spins belonging to sublatticesA
andB, respectively, and the last summation is over all sp
in the two sublattices. In general, the interactions inside s
latticesA andB may be distinct, e.g.,$Ji j8 % and$Ji j9 %, respec-
tively; herein we shall restrict ourselves to the simplest c
where the interactions among pairs of spins belonging ei
to sublatticeA or B will be taken from the same probabilit
distribution P(Ji j8 ). The exchange interactions$Ji j % act on
pairs of spins of different sublattices, whereas the rand
4760 ©2000 The American Physical Society
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PRE 61 4761EFFECTS OF RANDOM FIELDS IN AN . . .
magnetic fields$Hi% act on all sites of the system~both sub-
lattices!. The exchange interactions are independe
quenched random variables, following Gaussian probab
distributions with mean values

^Ji j &J5
J0

N
, ^Ji j8 &J5

J08

N
, ~2.2!

and variances

^Ji j
2 &J2^Ji j &J

25
J2

N
, ^J8 i j

2 &J2^Ji j8 &J
25

J82

N
. ~2.3!

In the equations above,^•••&J represents an average over t
corresponding probability distribution of exchange intera
tions ($Ji j % or $Ji j8 %). Herein, we assume the mean intras
blattice interactions as ferromagnetic (J08.0) and the mean
intersublattice interactions as antiferromagnetic (J0.0). The
local fields $Hi% are also independent, quenched rand
variables, identically distributed at each site; their probabi
distribution will not be specified at this stage.

Following the standard procedure@24,25#, we introducen
replicasa51,2, . . . ,n of the original system and comput
the free energy per spin,

f 5 lim
n→0

1

n
f n , f n5 lim

N→`
S 2

1

2bN
ln^^Zn&J&HD , ~2.4!

whereZn is the partition function ofn copies of the system
andb51/kBT. Since the exchange interactions and rand
fields are independent random variables, their respective
erages,̂ •••&J and ^•••&H , may be performed separatel
AveragingZn with respect to the random interactions, o
finds

^Zn&J5Tr expH bF(
i

(
a

HiSi
a

22Nf~mA
a ,mB

a ,qA
ab ,qB

ab!G J , ~2.5!

where

f~mA
a ,mB

a ,qA
ab ,qB

ab!

52
bJ2n

4
1

J08n

2N
2

bJ82n

4 S 12
n

ND1
J0

2 (
a

mA
amB

a

2
J08

4 (
a

@~mA
a!21~mB

a!2#2
bJ2

2 (
(ab)

qA
abqB

ab

2
bJ82

4 (
(ab)

@~qA
ab!21~qB

ab!2#, ~2.6!

and

mA,B
a 5

1

N (
i PA,B

Si
a , qA,B

ab 5
1

N (
i PA,B

Si
aSi

b , ~2.7!

with (ab) denoting distinct pairs of replicas. In order
transform to a single-site problem, we let the spin variab
t,
y

-
-

y

v-

s

mA,B
a andqA,B

ab assume continuous values, taking into acco
the constraints~2.7! by means of thed-function representa-
tions,

dS mA,B
a 2

1

N (
i PA,B

Si
aD

5E
2 i`

i` NdlA,B
a

2p i

3expF2NlA,B
a S mA,B

a 2
1

N (
i PA,B

Si
aD G ,

dS qA,B
ab 2

1

N (
i PA,B

Si
aSi

bD
5E

2 i`

i` NdlA,B
ab

2p i

3expF2NlA,B
ab S qA,B

ab 2
1

N (
i PA,B

Si
aSi

bD G . ~2.8!

The averaging over the random fields leads to

^^Zn&J&H5)
a

E
2`

`

dmA
aE

2 i`

i` NdlA
a

2p i E2`

`

dmB
a

3E
2 i`

i` NdlB
a

2p i )
(ab)

E
2`

`

dqA
abE

2 i`

i` NdlA
ab

2p i

3E
2`

`

dqB
abE

2 i`

i` NdlB
ab

2p i
exp@22Nb f n

3~mA
a ,mB

a ,qA
ab ,qB

ab ;lA
a ,lB

a ,lA
ab ,lB

ab!#,

~2.9!

where, after dropping out the site index notation,

f n5f~mA
a ,mB

a ,qA
ab ,qB

ab!1
1

2b (
a

~lA
amA

a1lB
amB

a!

1
1

2b (
(ab)

~lA
abqA

ab1lB
abqB

ab!2
1

2b
ln^Tr expH̄A&H

2
1

2b
ln^Tr expH̄B&H , ~2.10!

with H̄A,B denoting the ‘‘effective sublattice Hamiltonians,
given by

H̄A,B5(
a

~bH1lA,B
a !Sa1 (

(ab)
lA,B

ab SaSb. ~2.11!

In the thermodynamic limitN→`, the integrations over the
l variables may be performed by the saddle-point meth
the saddle-point equations are given by
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mA,B
a 5

^Tr Sa expH̄A,B&H

^Tr expH̄A,B&H

, qA,B
ab 5

^Tr SaSb expH̄A,B&H

^Tr expH̄A,B&H

.

~2.12!

The above equations allows one to determine thel variables
in terms of them andq variables; performing the integration
over them andq variables by the Laplace method, one fin
that the condition forf n to be stationary with respect to suc
variables yields

lA,B
a 5bJ08mA,B

a 2bJ0mB,A
a , lA,B

ab 5b2J82qA,B
ab 1b2J2qB,A

ab .

~2.13!

Substituting the results above into Eq.~2.10!,

f n52
b

4
~J21J82!n2

J0

2 (
a

mA
amB

a1
J08

4

3(
a

@~mA
a!21~mB

a!2#1
bJ2

2 (
(ab)

qA
abqB

ab1
bJ82

4

3 (
(ab)

@~qA
ab!21~qB

ab!2#2
1

2b
ln^Tr expH̄A&H

2
1

2b
ln^Tr expH̄B&H , ~2.14!

where we have discarded terms that vanish in the limiN
→`. Analogously, the effective sublattice Hamiltonians
Eq. ~2.11! become

H̄A,B5(
a

~bH1bJ08mA,B
a 2bJ0mB,A

a !Sa1 (
(ab)

~b2J82qA,B
ab

1b2J2qB,A
ab !SaSb. ~2.15!

In the next section we will consider a simple choice f
the parametersmA,B

a and qA,B
ab , the so-called replica-

symmetric solution.

III. THE REPLICA-SYMMETRIC SOLUTION

The replica-symmetric~RS! solution is obtained by as
suming order parameters independent of replica indices,

mA,B
a 5mA,B ~; a!, qA,B

ab 5qA,B @; ~ab!#. ~3.1!

Proceeding in the usual way, one finds that the station
conditions~2.12! and ~2.13! yield the equations of state

mA,B5^^tanhFA,B&&H , qA,B5^^tanh2 FA,B&&H ,
~3.2!

where

FA,B5b~H1J08mA,B2J0mB,A1AJ82qA,B1J2qB,Ax!,

~3.3!

and the brackets without subscript^•••& denote Gaussian
averages,

^•••&5E
2`

` dx

A2p
e2x2/2~••• !. ~3.4!
ry

In the same way, the free energy per spin in Eq.~2.4! be-
comes

f 52
bJ2

4
~12qA!~12qB!2

bJ82

8
@~12qA!21~12qB!2#

2
J0

2
mAmB1

J08

4
~mA

21mB
2 !2

1

2b
^^ ln 2 coshFA&&H

2
1

2b
^^ ln 2 coshFB&&H . ~3.5!

To determine the validity of the RS solution it is nece
sary to study its stability against fluctuations in the repl
space@12#. Such analysis of stability is similar to the one
the antiferromagnetic spin glass without random fie
@7,9,10#. One finds that the RS solution becomes unsta
against ‘‘transversal’’ fluctuations, i.e., fluctuations outsi
the replica-symmetric space, when one of the following
Almeida-Thouless~AT! stability conditions is violated,

22b2J82~122qA1r A!2b2J82~122qB1r B!.0,
~3.6!

@12b2J82~122qA1r A!#@12b2J82~122qB1r B!#

2b4J4~122qA1r A!~122qB1r B!.0, ~3.7!

where

r A,B5^^tanh4 FA,B&&H . ~3.8!

The ‘‘transversal’’ instability of the RS solution is usuall
associated with the necessity of a replica-symmetry-break
~RSB! procedure@13,14# and the emergence of a spin-gla
phase. An RS solution will be called stable if it satisfies t
conditions~3.6! and ~3.7!, and unstable otherwise.

We will now discuss the thermodynamic behavior of t
system within the RS approach. In our numerical calcu
tions we found that different types of solutions of the set
equations~3.2! are possible, depending on the values of t
various parameters of the model. In the absence of unifo
or random fields, we can distinguish theparamagnetic~P!
solution (qA5qB50, mA5mB50), thespin-glass~SG! so-
lution (qA5qB.0, mA5mB50), and the antiferromag-
netic ~AF! solution (qA5qB.0, mA52mB). An unstable
AF solution will be calledmixed antiferromagnetic(AF8).
The presence of uniform or random fields always induces
spin-glass order parameter, and we can distinguish only
‘‘saturated’’ paramagnetic ~P! solution (qA5qB.0, mA
5mB), and the antiferromagnetic ~AF! solution (qA
.0, qB.0, mAÞmB). In this case, the unstableP solution
will be called spin glass~SG! and the unstable AF solution
will be called mixed antiferromagnetic (AF8). A detailed
discussion of these nomenclatures will be given in some s
cific examples in the next section. We observe that the
and AF8 solutions are unstable, and the correct solutio
would require the consideration of RSB procedures, wh
are beyond the purpose of this work. If there are two unsta
RS solutions, it is not possible to choose one of them so
from considerations of stability. In such cases we choose
solution that seems more plausible from the physical poin
view, even though it may imply a higher free energy. W
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PRE 61 4763EFFECTS OF RANDOM FIELDS IN AN . . .
believe that a correct choice could in principle be made
studying the stability against ‘‘longitudinal’’ fluctuations
i.e., fluctuations within the replica-symmetric space. In
case of the standard SK model, such study leads to the
clusion that the RS free energy should be a maximum w
respect to the spin-glass order parameter@24,25#. However,
in the present work we limit ourselves to the consideration
stability against ‘‘transversal’’ fluctuations. In cases whe
there are both stable and unstable solutions, we alw
choose the stable one. Finally, when there are two or m
stable solutions, we choose the one with the lowest free
ergy. The first-order transition is determined numerically
equalizing the free energies. However, it is possible to ob
some analytic results for the critical lines and tricritic
points.

Let us begin with the simplest case of a symmet
random-field distribution obeyingP(H)5P(2H). In this
case, one may easily see that

mA52mB5m, qA5qB5q. ~3.9!

Therefore, the set of equations~3.2! become

m5^^tanhF&&H , q5^^tanh2F&&H , ~3.10!

with

F5b@H1~J081J0!m1A~J821J2!qx#. ~3.11!

Also, the stability conditions~3.6! and ~3.7! reduce to

12b2~J821J2!~122q1r !.0 ~3.12!

where

r 5^^tanh4F&&H . ~3.13!

In the absence of random fields, the above equations
cover those of the conventional SK model@6,12# in zero
magnetic field and exchange interactions with meanJ08
1J0)/N and variance (J821J2)/N. Therefore, the phase dia
grams are similar, except for the fact that the ferromagn
phase should be replaced by an antiferromagnetic phas
the presence of random fields, the transition from the pa
magnetic phase (m50) to the antiferromagnetic phase (m
Þ0) may be found by expanding equations~3.10! in powers
of the sublattice magnetizationm. After some calculations
one finds

m5am1bm31cm51•••, ~3.14!

where

a5b~J01J08!~12q!, ~3.15!

b52
1

3
b3~J01J08!3~124q13r !

3F112b2~J21J82!~124q13r !

12b2~J21J82!~124q13r !
G , ~3.16!

and we have omitted the rather lengthy expression for thc
coefficient. In the above equationsq andr correspond to the
y

e
n-
h

f

ys
re
n-
y
in

e-

ic
In

a-

paramagnetic solution (m50) determined from Eqs.~3.10!
and ~3.13!. There is only the paramagnetic phase ifa,1, b
,0, andc,0, and a second-order transition to the antife
romagnetic phase takes place fora51 andb,c,0. A tric-
ritical point occurs ifa51, b50, andc,0. If one considers
no intrasublattice interactions (J085J850), Eqs.~3.15! and
~3.16! recover those of the ferromagnetic SK model in t
presence of random fields following symmetric distributio
~Gaussian@26,27# and bimodal@28#!.

For nonsymmetric distributions of random fields, it is ne
essary to analyze the whole set of four equations~3.2!. The
transition from the paramagnetic to the antiferromagne
phase should be characterized by the onset of the stagg
magnetization@11#,

ms5
mA2mB

2
. ~3.17!

After rather laborious calculations one finds the expansio

ms5ams1bms
31cms

51•••, ~3.18!

where

a5b~J01J08!F ~12q!2
2b2~J822J2!~m2t !2

12b2~J822J2!~124q13r !
G ,

~3.19!

and we shall omit theb coefficient which is already very
lengthy. In the equation above the parametersm, q, t, andr
correspond to the paramagnetic solutionmA5mB5m and
qA5qB5q, being given by

m5^^tanhF&&H , q5^^tanh2 F&&H , ~3.20!

t5^^tanh3 F&&H , r 5^^tanh4 F&&H , ~3.21!

with

F5b@H1~J082J0!m1A~J821J2!qx#. ~3.22!

It is important to notice that for the particular case of a sy
metric random field distribution,m5t50, in such a way that
the coefficient of Eq.~3.19! reduces to the one of Eq.~3.15!,
as it should. There is only the paramagnetic phase ifa,1
andb,0; a second-order transition from paramagnetic to
antiferromagnetic phase takes place fora51 andb,0. Tri-
critical points may occur ifa51, b50, andc,0; however,
since we did not compute thec coefficient, we cannot check
the conditionc,0, and other possibilities such as critic
and bicritical endpoints@11# cannot be ruled out. In the limi
of zero variance of the random-field distribution, the resu
above reduce to those already obtained for the case o
antiferromagnetic spin glass@9#.

In the next section we present the results obtained fro
numerical analysis of the equations derived above.

IV. NUMERICAL RESULTS

Let us now consider two particular choices of rando
fields, specified, respectively, by the Gaussian and bimo
probability distributions. In the numerical analysis which fo
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lows, we work in temperature and energy units in such a w
that

kB51, AJ21J8251. ~4.1!

A. Gaussian distribution

We consider a Gaussian distribution for the random fie
with meanH0 and variances2,

P~H !5
1

A2ps
expF2

1

2s2
~H2H0!2G . ~4.2!

The average of any functiong of the effective fieldsFA,B ,
with respect to the Gaussian random field, can be easily
formed; one gets

^^g~FA,B!&&H5^g~FA,B8 !&, ~4.3!

where

FA,B8 5b~H01J08mA,B2J0mB,A1AJ82qA,B1J2qB,A1s2x!.

~4.4!

Let us first consider the case of a symmetric random-fi
distribution, i.e.,H050. As discussed in the previous se
tion, for s50 the phase diagram is identical to the one of
conventional SK model@6#, with the ferromagnetic phas
replaced by an antiferromagnetic phase, as shown in
1~a!. For s.0 the transition from the paramagnetic to t
antiferromagnetic phase is determined by the conditiona
51 given by Eq.~3.15!. This transition is continuous for al
s.0, since the coefficientb given by Eq.~3.16! is always
negative fora51. The phase diagram for a typical choice
random-field variances50.5 is exhibited in Fig. 1~b!. Our
results are in agreement with previous work on the SK mo
in the presence of a random-field following a symmet
Gaussian distribution@27#. One notices that as the field ran
domness~i.e., the variances2) increases, the paramagnet
phase becomes dominant, pushing the antiferromagn
phases~AF and AF8) to the region of increasingJ01J08 ,
while depressing the spin-glass phase to the low-tempera
region. Thus, the antiferromagnetic phases will be destro

FIG. 1. Phase diagrams for the antiferromagnetic spin glas
the presence of random fields, for a symmetric random-field Ga
ian distribution with ~a! s50 and ~b! s50.5. The heavy lines
indicate continuous transitions. Throughout the shaded regions
RS solution is unstable. The several phases are paramagneticP),
antiferromagnetic~AF!, spin glass~SG!, and mixed antiferromag-
netic (AF8), as defined in the text. Our temperature and ene
units are such thatkB51 andAJ21J8251.
y

s,

r-

d

e

g.

el

tic

re
d

by a random field with large enoughs, whereas the spin-
glass phase will always survive, even though at very l
temperatures.

In Fig. 2 we exhibit the spin-glass order parameterq and
the free-energy per spinf, as a function of the temperature
for the fixed valueJ01J0850.5 in the phase diagrams o
Figs. 1~a! and 1~b!, corresponding tos50 ands50.5, re-
spectively. We observe that the magnetizations are ide
cally zero for all temperatures (mA5mB50). In the cases
50 the result is identical to the standard SK model. Bel
the temperatureT51 there are two solutions: paramagne
(q50) and spin glass (q.0) @see Fig. 2~a!#. As is well
known @24,25#, the analytic continuation of the paramagne
solution down to low temperatures leads to a lower free
ergy than the one of the spin-glass solution@see Fig. 2~b!#,
but the paramagnetic solution is unacceptable because
not stable. Although the RS spin-glass solution is also
stable, it is believed that the correct RSB spin-glass solu
would be stable@24,25#. In the cases50.5 the spin-glass
order parameterq is always induced by the random field an
there is only one solutionq.0 for all temperatures, as
shown in Fig. 2~c!, with the free energy presenting a simp
behavior with the temperature@see Fig. 2~d!#. At high tem-
peratures this solution should correspond to the paramagn
phase. However, belowT50.555 48 the solution ceases to b
stable. In analogy to what happens for the SK model in
presence of a uniform magnetic field, where the lo
temperature region of a paramagnetic phase~below the AT
line! is sometimes referred to as a spin-glass phase@24,25#,
we shall adopt herein the same nomenclature for the l
temperature regions of our paramagnetic phases, where
AT instability gets manifested.

In Fig. 3 we exhibit the magnetizations and spin-gla

in
s-

he

y

FIG. 2. The spin-glass order parameterq and the free-energy pe
spin f, as a function of the temperature, for the fixed valueJ01J08
50.5 in the phase diagrams of Fig. 1. In~a! and~b!, corresponding
to s50, a continuousP-SG phase transition occurs atT51; at low
temperatures the SG solution leads to a higher free energy~heavy
line! than the analytic continuation of theP solution ~thin line!. In
~c! and ~d!, the field randomnesss50.5 induces the spin-glas
order parameter in such a way that noP-SG phase transition occur
within the replica-symmetry approximation. In the shaded regio
the RS solution is unstable.
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order parameters, as well as the free-energy per spin,
function of the temperature, for the fixed valueJ01J0852 in
the phase diagrams of Figs. 1~a! and 1~b!, corresponding to
s50 ands50.5, respectively. In the cases50, for tem-
peraturesT.2 there is only the paramagnetic solution,m
50 andq50, whereas belowT52 there is also the poss
bility of the antiferromagnetic solution,qA5qB.0 andmA
52mB , as shown in Fig. 3~a!. The free energy of the AF
solution is lower throughout most of the temperature ran
T,2, although the unstableP solution yields a lower free
energy asT→0 @see Fig. 3~b!#. The AF solution ceases to b
stable at a temperatureT50.089 482. The part of the AF
phase where such an instability occurs will be called a mi
phase, characterized by both antiferromagnetic ordering
replica-symmetry instability, in analogy with the mixe
phase of the standard SK model@24,25#. In the case ofs
50.5, the field randomness induces the spin-glass order
rameter even for the paramagnetic solution@see Fig. 3~c!#. In
this case the free energy of the AF solution is always low
than theP solution, as exhibited in Fig. 3~d!. The AF solu-
tion becomes unstable at a temperatureT50.132 01, below
which there is the mixed AF phase.

We now consider the effects of nonzero averages for
random fields (H0.0). Unlike the ferromagnetic phase o
the SK model in a random field@27#, the antiferromagnetic
phase that exists forH050 will survive up to a certain value
of H0. In the case of zero field disorder (s50), it has been
found that the phase diagram in theT2H0 plane may exhibit
either a continuous transition line@7,8#, or one~or two! tri-
critical points separating a first-order transition line fro
continuous transition lines@9#. An exhaustive study of al

FIG. 3. The magnetizations and spin-glass order parameter
well as the free energy per spin, as a function of the tempera
for the fixed valueJ01J0852 in the phase diagrams of Fig. 1.~a!
and ~b! correspond to field randomnesss50 and~c! and ~d! to s
50.5. In ~a! and ~c!, the heavy full lines represent the sublatti
magnetizationsmA andmB , whereas the heavy dashed lines refer
the sublattice spin-glass parametersqA andqB ; the full and dashed
thin lines represent, respectively, the paramagnetic solutionsmP

andqP . In ~b! and ~d!, the heavy and thin lines represent, resp
tively, the free energies associated with the AF andP solutions.
Throughout the shaded regions the RS AF solution is unstable
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possibilities becomes difficult because the phase diagr
depend on four parameters (J8/J, J08/J0 , J01J08 , ands). In
order to illustrate the effects of Gaussian random fields,
shall consider the caseJ8/J51, J08/J052, andJ01J0852.
The results of our numerical analysis are summarized in F
4 for typical values ofs. The continuous transition line
were determined from the conditiona51,b,0, where the
coefficient a is given by Eq.~3.19!. The tricritical points
correspond toa51,b50, and below them, the first-orde
transition lines were determined equating the free energie
the paramagnetic and antiferromagnetic phases. This pr
dure is illustrated in Fig. 5, corresponding to one particu
choice of temperature in Fig. 4~a!. By fixing the temperature
in T50.5, and varying the average value of the Gauss
random fieldH0, a first-order phase transition occurs f
H050.581 62. In the vicinity of the first-order phase tran
tion there are more than one solution for the order parame
@Figs. 5~a! and 5~b!#; we choose the ones which correspo
to a minimum of the free energy@Figs. 5~c! and 5~d!#. In Fig.
4 we also exhibit the lines below which the AT stabili
conditions~3.6! and~3.7! are violated, signaling the onset o
the spin-glass and mixed-antiferromagnetic phases. Du
discontinuities in the order parameters@see Figs. 5~a! and
5~b!#, whenever the RS instabilities occur within first-ord
transitions, they do not meet across the first-order transi
line, i.e., one finds a jump in the AT line separating pha
P-SG with respect to the one separating phases AF-A8.
Similar jumps in the AT lines have also been found for t
antiferromagnetic SK model in the presence of a unifo
magnetic field@9#, as well as for the ferromagnetic SK mod
under random fields following a symmetric bimodal pro
ability distribution @28#. For small field randomness, e.g.,s
50.5 shown in Fig. 4~a!, the phase diagram displays an a
tiferromagnetic phase separated from a paramagnetic p
by a continuous line, at high temperatures, and a first-or
transition line, at low temperatures, with such lines meet
at a tricritical point; the transitions to the spin-glass a
mixed-antiferromagnetic phases are discontinuous across
first-order transition line. These results are in agreement w
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-

FIG. 4. Phase diagrams of the antiferromagnetic spin glas
the presence of random fields following a nonsymmetric Gaus
distribution for J8/J51, J08/J052, andJ01J0852, with field ran-
domnesses~a! s50.5 and~b! s51. The heavy solid and dashe
lines represent, respectively, continuous and first-order transiti
In ~a! these lines meet at a tricritical point represented by a bl
circle. The thin lines delimit shaded regions where the RS solu
is unstable, indicating the onset of the spin-glass and mix
antiferromagnetic phases; one notices that in~a! such lines present a
gap across the first-order transition. Our units and phase nome
ture are as defined in Fig. 1.
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4766 PRE 61VIEIRA, NOBRE, AND YOKOI
previous works on antiferromagnetic spin glasses in the p
ence of a uniform magnetic field@9,10#. The effects of in-
creasing field randomness is to weaken the first-order tra
tion, to decrease the antiferromagnetic phases, w
enlarging the paramagnetic and spin-glass phases. For a
ficiently high field randomness, e.g.,s51 shown in Fig.
4~b!, the first-order transition disappears completely. By
creasing further the field randomness, one notices that
antiferromagnetic phases may get totally destroyed.

B. Bimodal distribution

We now consider the random field obeying a bimodal,
double-d distribution,

P~H !5
1

2
d~H2H01s!1

1

2
d~H2H02s!. ~4.5!

The average of any functiong of the effective fieldsFA,B ,
with respect to the bimodal random field is, given straig
forwardly by

^^g~FA,B!&&H5
1

2
^g~FA,B

1 !&1
1

2
^g~FA,B

2 !&, ~4.6!

where

FA,B
6 5b~H06s1J08mA,B2J0mB,A1AJ82qA,B1J2qB,Ax!.

~4.7!

FIG. 5. The magnetizations and spin-glass order parameter
well as the free energy per spin, as a function of the average o
random field, for a fixed value of the temperature,T50.5, in the
phase diagram of Fig. 4~a! corresponding tos50.5. A first-order
phase transition occurs atH050.58162. In~a! mA and mB denote
the sublattice magnetizations of the AF solution, whereasmP rep-
resents the one of theP solution. In~b!, qA andqB refer to the AF
sublattice spin-glass order parameters, whereasqP refers to the one
of theP solution. The corresponding free energy is shown in~c! and
the detail in the vicinity of the first-order phase transition is exh
ited in ~d!. The heavy line depict the solution with the lowest fr
energy. We observe that for this temperature the RS solutio
always stable.
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We observe that the numerical study of the bimodal cas
very similar to the Gaussian one, simply using the express
for the average in Eq.~4.6! instead of the one in Eq.~4.3!.
One should also notice that in the absence of field rand
ness (s50), the bimodal and Gaussian cases coincide, b
recovering the antiferromagnetic spin glass, already stud
in the literature@7–10#.

Let us first consider the caseH050, i.e., a symmetric
random-field distribution. The phase diagram in this case
be inferred from previous work on the ferromagnetic S
model in a random field following a symmetric bimodal di
tribution @28#, simply replacing the ferromagnetic phase
an antiferromagnetic phase. The main difference between
bimodal and the Gaussian cases is that fors.0.9573 the
critical frontier separating the paramagnetic and antifer
magnetic phases may be of first order. For 0.9573,s,1, as
the temperature is lowered, the continuous critical front
changes to a first-order transition line at a tricritical point;
the temperature is further lowered, the first-order critic
frontier changes again to a continuous line at a second
ritical point. However fors.1 the first-order transition line
extends down toT50 and only one tricritical point remain
@28#. Results fors50.5 ands51 are presented in Fig. 6. I
is important to notice that fors51 there are two tricritical
points, the second one occurring atT50. Also shown in Fig.
6 are the lines below which the AT stability condition~3.12!
is violated, signaling the onset of the spin-glass and mix
antiferromagnetic phases.

Let us now consider a nonsymmetric bimodal distributio
i.e., H0.0. The antiferromagnetic phase that exists inH0
50 will always survive up to a certain value ofH0. To
illustrate the effects of the bimodal random field, we choo
the same parameters used in the Gaussian case, i.e.,J8/J
51, J08/J052, andJ01J0852. The results of our numerica
analysis, fors50.5 ands50.9, are presented in Fig. 7. It i
important to mention that fors51, unlike in the Gaussian
case, the antiferromagnetic phase is completely destroye
the random field. It is clear from Fig. 7 that the effects
bimodal random fields do not differ qualitatively from thos
of Gaussian random fields, at least for the choice of para
eters considered herein.
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-
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FIG. 6. Phase diagrams for a symmetric bimodal random-fi
distribution with ~a! s50.5 and~b! s51. The heavy solid and
dashed lines represent, respectively, continuous and first-order
sitions. In ~b! there are two tricritical points indicated by blac
circles, the lower one occurring atT50. The thin lines delimit the
shaded region where the RS solution is unstable, indicating
onset of the spin-glass and mixed-antiferromagnetic phases.
units and phase nomenclature are as defined in Fig. 1.
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V. DISCUSSIONS

According to our calculations, the main effect of the ra
dom field in antiferromagnetic spin glasses is to decrease
extensions of the antiferromagnetic phases; in the ca
where there is a first-order transition line, the introduction
a random field also decreases the extension of such a
For a sufficiently large field randomness, first-order tran
tions are converted into continuous ones, whereas for a
larger randomness, the antiferromagnetic phases disap
The destruction of the first-order transition line
FexMg12xCl2, due to random fields, was observed recen
@29#.

For a specific application of our results, let us consider
effect of the Gaussian random field for the caseJ8/J
5J08/J055 and J01J0851.1, which is appropriate to de
scribe FexMn12xTiO3 @10#. In the absence of the random
field (s50), there is a first-order transition line meetin
continuous lines at two tricritical points, as shown in F
8~a!. Actually, we found numerically that such lines do n
meet smoothly at the putative tricritical point at higher te
peratures~in a region where the RS solution adopted her
is stable!, determined by the conditionsa51,b50 @with a
given by Eq.~3.19!#. This suggests the occurrence of critic
and bicritical endpoints@11#, instead of a tricritical point.
Also shown are the lines beyond which the AT stability co
ditions ~3.6! and~3.7! are violated, signaling the onset of th
spin-glass and mixed-antiferromagnetic phases. Our res
for s50 are in good agreement with previous calculatio
@10# using the same parameter values~for a better compari-
son with the results of Takayama, in Fig. 8 we have inver
the axes with respect to those of Figs. 4 and 7!. With the
application of a random field withs50.15, the first-order
transition is converted into a continuous line, while the an
ferromagnetic phases decrease in size, as shown in Fig.~b!.
Thus, the inclusion of a random field makes the theoret

FIG. 7. Phase diagrams of the antiferromagnetic spin glas
the presence of random fields following a nonsymmetric bimo
distribution for J8/J51, J08/J052, andJ01J0852, with field ran-
domnesses~a! s50.5 and~b! s50.9. The heavy solid and dashe
lines represent, respectively, continuous and first-order transiti
In ~a! these lines meet at a tricritical point represented by a bl
circle. The thin lines delimit shaded regions where the RS solu
is unstable, indicating the onset of the spin-glass and mix
antiferromagnetic phases; one notices that in~a! such lines present a
gap across the first-order transition. Our units and phase nome
ture are as defined in Fig. 1.
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calculations match more closely the experimental results
which no first-order transition is detected@15#. However, it is
possible that the first-order transition may also be elimina
without the inclusion of random fields, by slightly changin
the parameter valuesJ8/J, J08/J0, or J01J08 @9#.

It should be mentioned that all the results presented ab
were obtained within the simplest choice for the order p
rameters, i.e., the RS solution. Although such a solution
valid at high temperatures, it becomes unstable at low te
peratures~below the AT lines drawn in our phase diagram!.
Important low-temperature effects, like phase reentran
and tricritical points, inside such a region, may change co
pletely under a more appropriate choice for the order par
eters@13,14#.

We emphasize that there are important experimental
servations not captured by our calculations. Experimen
works in the mixed antiferromagnetic compoun
FexMn12xTiO3 @15# and in the diluted antiferromagne
FexZn12xF2 @19,22,23# have reported two irreversibility phe
nomena, a weak one at higher temperatures, attributed to
random-field effect, and a stronger one at lower tempe
tures, attributed to the spin-glass ordering. Since the me
field theory of the ferromagnetic random-field Ising mod
@30,31# does not indicate any kind of glassy phase induc
by the random field, it is natural to expect the same limi
tion in our mean-field calculations. Presumably, a mu
more sophisticated approach@32–34# is needed to describe
properly the glassy phase associated with the irreversib
phenomena observed experimentally.
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FIG. 8. Phase diagrams of the antiferromagnetic spin glas
the presence of random fields following a nonsymmetric Gaus
distribution for J8/J5J08/J055, J01J0851.1, with field random-
nesses~a! s50 and~b! s50.15. The heavy solid and dashed lin
represent, respectively, continuous and first-order transitions. In~a!
these lines meet at tricritical points represented by black circ
~notice that, at high temperatures, such lines do not meet smoot!.
The thin lines delimit regions where the RS solution is unstab
indicating the onset of the spin-glass and mixed-antiferromagn
phases. Our units and phase nomenclature are as defined in F
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