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Effects of random fields in an antiferromagnetic Ising spin glass

Selma R. Vieira and Fernando D. Nobre
Departamento de Bica Teoica e Experimental, Universidade Federal do Rio Grande do Norte,
Caixa Postal 1641, 59072-970 Natal, RN, Brazil

Carlos S. O. Yokoi
Instituto de Fsica, Universidade de”®aPaulo, Caixa Postal 66318, 05315-970cSRaulo, SP, Brazil
(Received 26 July 1999; revised manuscript received 30 Novemben 1999

The effects of random fields on the two-sublattice infinite-ranged Ising spin-glass model are investigated.
This model is expected to be appropriate as a mean-field description of antiferromagnetic spin glasses such as
FeMn; _,TiO5. Within replica-symmetric calculations, we study the influence of Gaussian and bimodal ran-
dom fields on the phase transitions and phase diagrams. It is shown that, in the presence of random fields, the
first-order transitions are weakened and may become continuous. Also, the antiferromagnetic phases are always
destroyed by sufficiently strong random fields. A qualitative comparison with existing experimental results and
the limitations of the present calculations are discussed.

PACS numbse(s): 05.50+q, 64.60—i, 75.10.Nr, 75.50.Lk

I. INTRODUCTION [20,21], small frustration plays an important role at high di-
lutions, leading to the occurrence of spin-glass behavior, as
Experimental works carried out in diluted antiferromag-reported by experimental studig22,23.

nets(e.g., FeMg,_,Cl, [1-3]) and in mixed antiferromag- Such considerations motivated us to study the effects of

netic compoundge.g., FeMn;_, TiO5 [4,5]) show evidences random fields on the two sublattice SK modéH1Q. In

of spin-glass behavior for certain rangesofalues. Within ~ Particular, we will be interested in the effects of the random

such concentration ranges, these systems may be regardedfigifls on the phase transitions and phase diagrams of the

Ising short-ranged spin glasses: the competing short—randéOdeL For the sake of simplicity, the random interactions

ferromagnetic and antiferromagnetic interactions are resporfnd random fields will be treated as independent random

sible for frustration, while the strong uniaxial anisotropy vVariables, even though this does not represent an accurate

keeps the spins aligned along the axial direction. A two-Physical picture, since both randomnesses have a common

sublattice version of the inﬁnite-ranged Sherrington_origin. Our analytical results are valid for arbitrary distribu-

Kirkpatrick (SK) spin-glass moddl6] was propose{i7—10], tions of random fields, although in the numerical calculations

as a mean-field theory to explain the antiferromagnetic an#Ve vvjll restrict ourselves to the Gaussian and bimodal dis-

spin-glass orderings observed in these systems. The trandflbutions.

tion to the antiferromagnetic phase is characterized by the

onset of the staggered magnetizatjdi], whereas the tran- Il. THE MODEL

sition to the spin-glass phase is signaled by the instability of ) . .

the replica-symmetric solutiof.2]. In the spin-glass phase L€t US consider a set of Ising spiSg=*1 located at the

the appropriate solution has a broken replica symmetr?!tes of two |dent|_cal su_blattlce!s andB, e_ach_contalmngd

[13,14), describing a nonergodic situation, with a free-energySiteéS: The model is defined by the Hamiltonian

profile with many valleys separated by large barriers. Thus,

experimentally the transition to the spin-glass phase is often H= 2 J:SS — 2 J'SS

identified with the occurrence of irreversibility and hyster- icAies 1 (fyea 1T

esis. Experimental determination of the field-temperature

phase diagram in EbIn,_,TiO3 [15], as well as the de - > JSS-D HS (2.)
Almeida-Thouless instability ling12], are in qualitative fyes T g

agreement with mean-field results0].

Random fields are generated in diluted antiferromagnetwhere the first sum applies to all distinct pairs of spins be-
through the application of an external uniform magnetic fieldlonging to different sublattices, the second and third ones
[16,17). Indeed, both spin-glassl] and random-field 18] refer to all distinct pairs of spins belonging to sublattides
behaviors have been reported in,He;_,Cl,. The mixed andB, respectively, and the last summation is over all spins
compound FgMn, _, TiO5 is not diluted, but it has been ar- in the two sublattices. In general, the interactions inside sub-
gued that the imbalance between the magnetic moments ditticesA andB may be distinct, e.g{J;;} and{J};}, respec-

Fe and Mn will also generate an effective random fl@lg].  tively; herein we shall restrict ourselves to the simplest case
In contrast to these systems, the diluted antiferromagnevhere the interactions among pairs of spins belonging either
FezZn,_,F, presents almost no frustration and only theto sublatticeA or B will be taken from the same probability
random-field behavior was observed at small dilutifh@]. distribution P(Ji’j). The exchange interactior{s;} act on
However, according to recent theoretical investigationgairs of spins of different sublattices, whereas the random
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magnetic field{H,} act on all sites of the systethoth sub-  mg g andgy’s assume continuous values, taking into account
lattice. The exchange interactions are independentthe constraint§2.7) by means of thes-function representa-
quenched random variables, following Gaussian probabilitytions,

distributions with mean values

3, 6( W 1 > a)
m —_
<‘]IJ>J <JIJ>J 2.2 AB N B S
and variances :f“ Nd)\,_*B
—ijoe 2
2 12
J J J'3Y = (3] V5=—. 2.3 1
< |J>J < |1>J < >J < IJ>J N ( ) Xexr{_N)\X’B(mZ’B_NiEZAB Sla”,

In the equations abové; - - ) ; represents an average over the
corresponding probability distribution of exchange interac-
tions ({J;;} or {Ji;}). Herein, we assume the mean intrasu- 5(q
blattice interactlons as ferromagnetidyt0) and the mean
intersublattice interactions as antiferromagnefig$0). The jim NdA g2,

1
ﬁ—ﬁ > SiSiB)

ieAB

local fields {H;} are also independent, quenched random

variables, identically distributed at each site; their probability

distribution will not be specified at this stage. 1
Following the standard procedui24,25, we introducen Xex;{ B ( qih—— > s

replicasa=1,2, ... n of the original system and compute Nicas

the free energy per spin,

—joo 277'

}. (2.9

The averaging over the random fields leads to

- = Nd\g (=
@11 [~ amg[” f g
whereZ" is the partition function oh copies of the system o o o
and B=1/kgT. Since the exchange interactions and random j.m Nd\ g jim Nd\ &8
i

1 : n
f=||mﬁfn, f,= lim Z/BNln«Z Youl, (2.4

n—0 N— o0

fields are independent random variables, their respective av-

erages{---); and(---),, may be performed separately. 2

—joo 2mi (ap)

AveragingZ" with respect to the random interactions, one " i Nd\ aﬁ
finds f dag J S exg —2Ngf,
i
@)=Trew 3 3 st o A AR A
(2.9
—2N¢(my,mg, , 2.5
(ma. M, 44 qB ) J @9 where, after dropping out the site index notation,
where
—_ @ @ af a o a o
S(m2.me q2f qef) fo=¢(ma.m3,a2” a3 )+2ﬁ g (ASMI+NEMS)
\]Zn Jon len n J 1 af af
=— B4 + %— i 7 (1— N) + EO > mamg + 28 (; ()\ABqAﬁ+)\BBqBﬁ)_ |n<Tr expHan
BJ? 1 _
- % [(m3)2+(mg)2]— - (aEﬁ) qaPqgh - EWT" expHe)n » (2.10
E [(q2P)2+(q2F)?], (2.6) with ﬁA,B denoting the “effective sublattice Hamiltonians,”
8 . given by
and B
1 Has=2 (BH+Nio)S™+ 3 AES'S. (213
Mas=N 2 ' arhe=y 2 S 7

In the thermodynamic limiN— oo, the integrations over the
with (aB) denoting distinct pairs of replicas. In order to N\ variables may be performed by the saddle-point method,;
transform to a single-site problem, we let the spin variableshe saddle-point equations are given by
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. (Trse eXpﬁA,EOH s (T e eXpﬁA,BM In the same way, the free energy per spin in Efj4) be-

Ma = = y Oa's= comes
(Tr epoA,B)H

<Trexp77A,B>H
(2 BI? pI'"? 2 2
f:——4 (1-ga)(1—0g)— 8 [(1-ga)+(1—qp)‘]

The above equations allows one to determinexthariables

in terms of them andq variables; performing the integrations Jo 3 1
over them andq variables by the Laplace method, one finds - ?mAmBJr Z(m,z_\Jr m3) — 2—<(In 2 coshd )y
that the condition foff , to be stationary with respect to such B
variables yields 1
— 5> ((In2 cosh®g))y. (3.5
Nas=BJoMA s~ BIoME o, Nafa= B2 %as+ B2 %05l 2B
(213 To determine the validity of the RS solution it is neces-
Substituting the results above into Bg.10), sary to study its stability against fluctuations in the replica
spacd 12]. Such analysis of stability is similar to the one of
B o . Jo . Jo the antiferromagnetic spin glass without random fields
fo=—77+3")n== ; mamg + - [7,9,10. One finds that the RS solution becomes unstable
against “transversal” fluctuations, i.e., fluctuations outside
N " BJ? B BJ'? the replica-symmetric space, when one of the following de
X; [(my)?+(mg)?]+ - (aEB) aa’as’+ 2 Almeida-ThoulesgAT) stability conditions is violated,
1 B 2—B2)'2(1—2qa+ra)— B2 3(1-2qg+rg)>0,
X(E) [(03%)%+(a8")*]— 5 g In(TrexpH, ) (36
ap
1 - [1-B202(1-20a+1a)][1-B%)'?(1-205+T1p)]
~2pM(TrexpHe)n, 214 —B3(1-205+12)(1-205+15)>0,  (3.7)

where we have discarded terms that vanish in the it Wwhere
— 0
- {Zﬁnﬁlggggrsnlz, the effective sublattice Hamiltonians in Fas=((tant @, ) 3.9
The “transversal” instability of the RS solution is usually

Hap=2, (BH+BIGME g— BIomE 0)S*+ >, (B21'%qsh,  associated with the necessity of a replica-symmetry-breaking

a ' ' (aB) ' (RSB) procedurg13,14] and the emergence of a spin-glass
phase. An RS solution will be called stable if it satisfies the
conditions(3.6) and(3.7), and unstable otherwise.

We will now discuss the thermodynamic behavior of the
system within the RS approach. In our numerical calcula-
tions we found that different types of solutions of the set of
equationg3.2) are possible, depending on the values of the
various parameters of the model. In the absence of uniform
or random fields, we can distinguish tparamagnetic(P)

The replica-symmetri¢RS) solution is obtained by as- solution @a=0g=0, My=mg=0), thespin-glass(SG) so-
suming order parameters independent of replica indices, lution (qa=0g>0, my=mg=0), and the antiferromag-

netic (AF) solution (Qa=9g>0, ma=—mg). An unstable
Mag=Mag (V a), gai=das [V (@B)]. (3.1  AF solution will be calledmixed antiferromagneti¢AF’).
The presence of uniform or random fields always induces the

Proceeding in the usual way, one finds that the stationar,in_glass order parameter, and we can distinguish only the
conditions(2.12 and(2.13 yield the equations of state “saturated” paramagnetic (P) solution (qa=Qg>0, Mx

Ma o= ((tanh® ’ —((tan? @ ’ =mg), and the antiferromagnetic (AF) solution (Qa
ae=(( aB)hs A= AB)H 32 >0, gg>0, my#mg). In this case, the unstabesolution
will be called spin glas$SG) and the unstable AF solution

+B2%qgh) S SP. (2.15

In the next section we will consider a simple choice for
the parametersmy z and qXFB, the so-called replica-
symmetric solution.

Ill. THE REPLICA-SYMMETRIC SOLUTION

where will be called mixed antiferromagnetic (AF. A detailed
) 5 . discussion of these nomenclatures will be given in some spe-
®pp=L(H+Iomag—JoMg o+ VI “0a g+ I0p aX), cific examples in the next section. We observe that the SG

(3.3 and AF solutions are unstable, and the correct solutions
would require the consideration of RSB procedures, which
are beyond the purpose of this work. If there are two unstable
RS solutions, it is not possible to choose one of them solely
- dx from considerations of stability. In such cases we choose the
(- )= _efx2/2(. ). (3.4) solution that seems more plausible from the physical point of
— view, even though it may imply a higher free energy. We

and the brackets without subscript--) denote Gaussian
averages,
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believe that a correct choice could in principle be made byparamagnetic solutionn{=0) determined from Eqg3.10
studying the stability against “longitudinal” fluctuations, and(3.13. There is only the paramagnetic phasei 1, b
i.e., fluctuations within the replica-symmetric space. In the<0, andc<0, and a second-order transition to the antifer-
case of the standard SK model, such study leads to the conremagnetic phase takes place fo=1 andb,c<0. A tric-
clusion that the RS free energy should be a maximum withitical point occurs ifa=1,b=0, andc<O0. If one considers
respect to the spin-glass order paraméger,25. However,  no intrasublattice interactions){=J’=0), Egs.(3.15 and

in the present work we limit ourselves to the consideration 0{3.16) recover those of the ferromagnetic SK model in the
stability against “transversal” fluctuations. In cases wherepresence of random fields following symmetric distributions
there are both stable and unstable solutions, we alway§saussiaf26,27 and bimodal28]).

choose the stable one. Finally, when there are two or more For nonsymmetric distributions of random fields, it is nec-
stable solutions, we choose the one with the lowest free enessary to analyze the whole set of four equatithg). The
ergy. The first-order transition is determined numerically bytransition from the paramagnetic to the antiferromagnetic

equalizing the free energies. However, it is possible to obtaiphase should be characterized by the onset of the staggered
some analytic results for the critical lines and tricritical magnetizatiorf11],

points.
Let us begin with the simplest case of a symmetric ma— Mg
random-field distribution obeyind®(H)=P(—H). In this me=——%—- 3.17

case, one may easily see that
After rather laborious calculations one finds the expansion

Mmp=—Mg=mM, ga=0g=d. (3.9 , :
mg=ams+bmg+cmi+-- -, (3.18
Therefore, the set of equatiofi3.2) become s~ AT DTG+ T
where
m={(tanh®))y, g=({tanfd)), (3.10
: 28%(3'%2=3%)(m—1)2
with a=B(Jo+30)| (1—q)— B )(m—t) |
1-B%(J3'?—=J3%)(1—-4q+3r)
d=pB[H+(J,+Io)m++(JI'2+I%)gx].  (3.1) (3.19
Also, the stability condition$3.6) and (3.7) reduce to and we shall omit thé coefficient which is already very
D g m lengthy. In the equation above the parametess, t, andr
1-p53"°+3)(1-2q+r)>0 (312 correspond to the paramagnetic solution=mg=m and
where ga=0g=4d, being given by
r=((tanf®)),,. (313 m=((tanh®))y, q=((tanF®)),,,  (3.20

In the absence of random fields, the above equations re- t=((tanff @)y, r={(tantf @)y, (3.2

cover those of the conventional SK modé,12] in zero .

e . . . with
magnetic field and exchange interactions with medf (
+Jo)/N and variance ' 2+ J?)/N. Therefore, the phase dia- ®=B[H+ (- Jm+ V321 3Dax].  (3.22
grams are similar, except for the fact that the ferromagnetic 0 -0 ' '
phase should be replaced by an antiferromagnetic phase. |fis important to notice that for the particular case of a sym-
the presence of random fields, the transition from the parametric random field distributiom=t=0, in such a way that
magnetic phasen=0) to the antiferromagnetic phasen( the coefficient of Eq(3.19 reduces to the one of E(3.15),
#0) may be found by expanding equatia8s10 in powers  as it should. There is only the paramagnetic phasa<ifl
of the sublattice magnetizatiom. After some calculations andb<0; a second-order transition from paramagnetic to the
one finds antiferromagnetic phase takes placedsr1 andb<O0. Tri-
critical points may occur if=1, b=0, andc<0; however,
since we did not compute thecoefficient, we cannot check
the conditionc<0, and other possibilities such as critical
and bicritical endpointgl1] cannot be ruled out. In the limit

a=pB(Jo+35)(1-q), (3.15 of zero variance of the random-field Qistribution, the results

above reduce to those already obtained for the case of an
1 antiferromagnetic spin glag9].
b=-— §,33(‘]0+ J5)3(1—4q+3r) In the next section we present the results obtained from a
numerical analysis of the equations derived above.

m=am+bm*+cm®+- - -, (3.19

where

1+2p8%(J%+3'?)(1—4q+3r)
1-BX(32+3'?)(1-4q+3r) |

(3.1 IV. NUMERICAL RESULTS

Let us now consider two particular choices of random
and we have omitted the rather lengthy expression forcthe fields, specified, respectively, by the Gaussian and bimodal
coefficient. In the above equatiogsandr correspond to the probability distributions. In the numerical analysis which fol-
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FIG. 1. Phase diagrams for the antiferromagnetic spin glass in d
the presence of random fields, for a symmetric random-field Gauss
ian distribution with(a) o=0 and (b) 0=0.5. The heavy lines
indicate continuous transitions. Throughout the shaded regions the
RS solution is unstable. The several phases are paramagRétic (
antiferromagnetidAF), spin glass(SG), and mixed antiferromag-
netic (AF), as defined in the text. Our temperature and energy
units are such thatg=1 andJ?+J"2=1.

1 1.5
T

FIG. 2. The spin-glass order parametgeand the free-energy per
lows, we work in temperature and energy units in such aWa)spinf, as a function of the temperature, for the fixed valye- J;

that =0.5 in the phase diagrams of Fig. 1.(& and(b), corresponding
to o=0, a continuou$-SG phase transition occurs®t1; at low
kg=1, VJ?+J'°=1. (4.1  temperatures the SG solution leads to a higher free eréwegvy

line) than the analytic continuation of tHesolution (thin line). In

(c) and (d), the field randomness=0.5 induces the spin-glass

order parameter in such a way thatReSG phase transition occurs
We consider a Gaussian distribution for the random fieldswithin the replica-symmetry approximation. In the shaded regions

with meanHO and Variancefz, the RS solution is unstable.

A. Gaussian distribution

by a random field with large enough, whereas the spin-
) (4.2) glass phase will always survive, even though at very low
temperatures.
In Fig. 2 we exhibit the spin-glass order parametemd
the free-energy per spify as a function of the temperature,
for the fixed valueJy+Jy=0.5 in the phase diagrams of
Figs. 1@ and Xb), corresponding ter=0 ando=0.5, re-
_ / spectively. We observe that the magnetizations are identi-
((9(®ap))n=(9(Phage)), “3 cally zero for all temperaturesr(y=mg=0). In the caser
where =0 the result is identical to the standard SK model. Below
the temperaturd =1 there are two solutions: paramagnetic
Dpg=PB(Hot+Iimas—JoMg a+ I 20 s+ I°ds a+0?x).  (q=0) and spin glassq>0) [see Fig. 2a)]. As is well
(4.4) known[24,25, the analytic continuation of the paramagnetic
] ) ) ~solution down to low temperatures leads to a lower free en-
Let us first consider the case of a symmetric random—ﬂelqergy than the one of the spin-glass solutsee Fig. 2b)],
distribution, i.e.,Ho=0. As discussed in the previous sec- pyt the paramagnetic solution is unacceptable because it is
tion, for =0 the phase diagram is identical to the one of thenot stable. Although the RS spin-glass solution is also un-
conventional SK model6], with the ferromagnetic phase staple, it is believed that the correct RSB spin-glass solution
replaced by an antiferromagnetic phase, as shown in Figyould be stablg24,25. In the casec=0.5 the spin-glass
1(a). For 0>0 the transition from the paramagnetic to the grder parameteq is always induced by the random field and
antiferromagnetic phase is determined by the condiion there is only one solutiory>0 for all temperatures, as
=1 given by Eq.(3.15. This transition is continuous for all  shown in Fig. Zc), with the free energy presenting a simple
>0, since the coefficierty given by Eq.(3.16) is always  pehavior with the temperatufsee Fig. 2d)]. At high tem-
negative fora=1. The phase diagram for a typical choice of peratures this solution should correspond to the paramagnetic
random-field variancer=0.5 is exhibited in Fig. ). Our  phase. However, beloW=0.555 48 the solution ceases to be
results are in agreement with previous work on the SK mOdeétab|e_ In ana|ogy to what happens for the SK model in the
in the presence of a random-field following a symmetricpresence of a uniform magnetic field, where the low-
Gaussian distributioh27]. One notices that as the field ran- temperature region of a paramagnetic phdssow the AT
domnesgi.e., the variancer?) increases, the paramagnetic line) is sometimes referred to as a spin-glass ptiade25,
phase becomes dominant, pushing the antiferromagnetige shall adopt herein the same nomenclature for the low-
phases(AF and AF) to the region of increasind,+Jg, temperature regions of our paramagnetic phases, where the
while depressing the spin-glass phase to the low-temperatuT instability gets manifested.
region. Thus, the antiferromagnetic phases will be destroyed In Fig. 3 we exhibit the magnetizations and spin-glass

1 1 (H—Hg)?
exg — —(H-
2mo 202 0

The average of any functiog of the effective fieldsb, g,
with respect to the Gaussian random field, can be easily pe
formed; one gets

P(H)=
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0* .
0 04 g 08 0 04 5 08
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FIG. 4. Phase diagrams of the antiferromagnetic spin glass in
the presence of random fields following a nonsymmetric Gaussian
distribution forJ'/J=1, J3/Jo=2, andJy+ Jy=2, with field ran-
domnesse$a) o=0.5 and(b) o=1. The heavy solid and dashed
lines represent, respectively, continuous and first-order transitions.
In (a) these lines meet at a tricritical point represented by a black
circle. The thin lines delimit shaded regions where the RS solution
is unstable, indicating the onset of the spin-glass and mixed-
antiferromagnetic phases; one notices thagjrsuch lines present a

FIG. 3. The magnetizations and spin-glass order parameters, gp across the first-order transition. Our units and phase nomencla-
well as the free energy per spin, as a function of the temperatureyre are as defined in Fig. 1.

for the fixed valuely+Jy=2 in the phase diagrams of Fig. (&)

and (b) correspond to field randomness=0 and(c) and(d) to o I - .
=0.5. In (a) and (c), the heavy full lines represent the sublattice possibilities becomes difficult because the phase diagrams

magnetizationsn, andmg , whereas the heavy dashed lines refer to depend 9“ four parameterd’(J, Jo/Jo, ‘J.0+Jé* anda). In
the sublattice spin-glass parametggsandgg ; the full and dashed ~Order to illustrate the effects of Gaussian random fields, we
thin lines represent, respectively, the paramagnetic solutioms ~shall consider the cas&#/J=1, Jy/Jo=2, andJy+J5=2.
andgp. In (b) and(d), the heavy and thin lines represent, respec-The results of our numerical analysis are summarized in Fig.
tively, the free energies associated with the AF &dolutions. 4 for typical values ofc. The continuous transition lines
Throughout the shaded regions the RS AF solution is unstable. were determined from the conditics=1,b<0, where the
coefficienta is given by Eq.(3.19. The tricritical points
order parameters, as well as the free-energy per spin, ascarrespond toa=1b6=0, and below them, the first-order
function of the temperature, for the fixed valiigt Jo=2 in  transition lines were determined equating the free energies of
the phase diagrams of Figsial and Xb), corresponding to the paramagnetic and antiferromagnetic phases. This proce-
0=0 ando=0.5, respectively. In the case=0, for tem-  dure is illustrated in Fig. 5, corresponding to one particular
peraturesT>2 there is only the paramagnetic solutian, choice of temperature in Fig(d. By fixing the temperature
=0 andq=0, whereas beloWw =2 there is also the possi- in T=0.5, and varying the average value of the Gaussian
bility of the antiferromagnetic solutiorga=0g>0 andmp random fieldH,, a first-order phase transition occurs for
=-—mg, as shown in Fig. @. The free energy of the AF H;=0.58162. In the vicinity of the first-order phase transi-
solution is lower throughout most of the temperature rangeion there are more than one solution for the order parameters
T<2, although the unstable solution yields a lower free [Figs. §a) and §b)]; we choose the ones which correspond
energy ad — 0 [see Fig. 8)]. The AF solution ceases to be to a minimum of the free enerd¥igs. 5c) and §d)]. In Fig.
stable at a temperaturE=0.089482. The part of the AF 4 we also exhibit the lines below which the AT stability
phase where such an instability occurs will be called a mixeatonditions(3.6) and(3.7) are violated, signaling the onset of
phase, characterized by both antiferromagnetic ordering anthe spin-glass and mixed-antiferromagnetic phases. Due to
replica-symmetry instability, in analogy with the mixed discontinuities in the order parametdsee Figs. &) and
phase of the standard SK modé&4,25. In the case ofr 5(b)], whenever the RS instabilities occur within first-order
=0.5, the field randomness induces the spin-glass order p#ransitions, they do not meet across the first-order transition
rameter even for the paramagnetic solufisee Fig. &)]. In line, i.e., one finds a jump in the AT line separating phases
this case the free energy of the AF solution is always loweP-SG with respect to the one separating phases AF-AF
than theP solution, as exhibited in Fig.(8). The AF solu- Similar jumps in the AT lines have also been found for the
tion becomes unstable at a temperatlire0.132 01, below antiferromagnetic SK model in the presence of a uniform
which there is the mixed AF phase. magnetic field 9], as well as for the ferromagnetic SK model
We now consider the effects of nonzero averages for thender random fields following a symmetric bimodal prob-
random fields Hy>0). Unlike the ferromagnetic phase of ability distribution[28]. For small field randomness, e.g:,
the SK model in a random fiel27], the antiferromagnetic =0.5 shown in Fig. &), the phase diagram displays an an-
phase that exists fdil ;=0 will survive up to a certain value tiferromagnetic phase separated from a paramagnetic phase
of Hy. In the case of zero field disordesr€0), it has been by a continuous line, at high temperatures, and a first-order
found that the phase diagram in the- H, plane may exhibit transition line, at low temperatures, with such lines meeting
either a continuous transition lif&,8], or one(or two) tri- at a tricritical point; the transitions to the spin-glass and
critical points separating a first-order transition line from mixed-antiferromagnetic phases are discontinuous across the
continuous transition linef9]. An exhaustive study of all first-order transition line. These results are in agreement with
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(b)
T
P
1 AF
:'AF’
A 0 0
_107 0.5 1.5 Jo+Jo’ 25 05 1.5 Jo+Jo’ 2.5

-1.09 [
f

=111

FIG. 6. Phase diagrams for a symmetric bimodal random-field
distribution with (a) =0.5 and(b) o=1. The heavy solid and
dashed lines represent, respectively, continuous and first-order tran-
sitions. In (b) there are two tricritical points indicated by black
circles, the lower one occurring &t=0. The thin lines delimit the
1.3 . . . -1.15 . . shaded region where the RS solution is unstable, indicating the
0 02 04 06 08 05 0.55 06 0.65 . : . .

H, H, onset of the spin-glass and mixed-antiferromagnetic phases. Our

o ) units and phase nomenclature are as defined in Fig. 1.
FIG. 5. The magnetizations and spin-glass order parameters, as

well as the free energy per spin, as a function of the average of the ) ) ]
random field, for a fixed value of the temperatufes 0.5, in the ~ \We observe that the numerical study of the bimodal case is

phase diagram of Fig.(d corresponding tar=0.5. A first-order ~ very similar to the Gaussian one, simply using the expression
phase transition occurs &t,=0.58162. In(@) m, andmg denote  for the average in Eq4.6) instead of the one in Eq4.3).

the sublattice magnetizations of the AF solution, whemeasrep-  One should also notice that in the absence of field random-
resents the one of the solution. In(b), g andqg refer to the AF ness (-=0), the bimodal and Gaussian cases coincide, both

sublattice spin-glass order parameters, whegga®fers to the one  yecovering the antiferromagnetic spin glass, already studied
of the P solution. The corresponding free energy is show(tjrand in the literaturd 7—10.

Fhe o_Ietall in the vicinity of the flrst-order phase transition is exhib- Let us first consider the casd,=0, i.e., a symmetric

ited in (d). The heavy line depict the solution with the lowest free d field distributi The bh di in thi

energy. We observe that for this temperature the RS solution i%an_om- e IStribu |qn. € phase diagram In this ca}se can

always stable. e inferred from previous work on the ferromagnetic SK
model in a random field following a symmetric bimodal dis-

previous works on antiferromagnetic spin glasses in the predtibution [28], simply replacing the ferromagnetic phase by
ence of a uniform magnetic fiel®,10]. The effects of in- &N antiferromagnetic phase. The main difference between the

creasing field randomness is to weaken the first-order transRimodal and the Gaussian cases is that 4or0.9573 the
tion, to decrease the antiferromagnetic phases, whilgritical frontier separating the paramagnetic and antiferro-

enlarging the paramagnetic and spin-glass phases. For a siiagnetic phases may be of first order. For 0.9563<1, as

ficiently high field randomness, e.gr=1 shown in Fig. the temperature is lowered, the continuous critical frontier
4(b), the first-order transition disappears completely. By in-changes to a first-order transition line at a tricritical point; as
creasing further the field randomness, one notices that tH@€ temperature is further lowered, the first-order critical

antiferromagnetic phases may get totally destroyed. frontier changes again to a continuous line at a second tric-
ritical point. However fore>1 the first-order transition line

extends down td@ =0 and only one tricritical point remains

-113

B. Bimodal distribution [28]. Results foro=0.5 ando=1 are presented in Fig. 6. It
We now consider the random field obeying a bimodal, oris important to notice that foor=1 there are two tricritical
doubles distribution, points, the second one occurringTat 0. Also shown in Fig.

6 are the lines below which the AT stability conditi@®.12)
is violated, signaling the onset of the spin-glass and mixed-
antiferromagnetic phases.

Let us now consider a nonsymmetric bimodal distribution,

P(H)= ;5(H—Ho+a)+;5(H—HO—U). (4.5)

The average of any functiog of the effective fieldsb,z,  1-€., Ho>0. The antiferromagnetic phase that existsHp
with respect to the bimodal random field is, given straight-=0 will always survive up to a certain value éf,. To
forwardly by illustrate the effects of the bimodal random field, we choose

the same parameters used in the Gaussian case)'il@.,
1 1 =1, J¢/Jp=2, andJy+Jy=2. The results of our numerical
((g((bA,B)»H:E(g((DX’B)}vL E(g(@;’B)), (4.6 analysis, forr=0.5 ando=0.9, are presented in Fig. 7. It is
important to mention that foo=1, unlike in the Gaussian
case, the antiferromagnetic phase is completely destroyed by
where the random field. It is clear from Fig. 7 that the effects of
bimodal random fields do not differ qualitatively from those
CD,fsz,B(Hot o+Jomag—JoMp A+ \/J’quYB-i- quB,Ax). of Gaussian random fields, at least for the choice of param-
(4.7)  eters considered herein.
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FIG. 7. Phase diagrams of the antiferromagnetic spin glass in FIG. 8. Phase diagrams of the antiferromagnetic spin glass in
the presence of random fields following a nonsymmetric bimodalthe presence of random fields following a nonsymmetric Gaussian
distribution forJ’/J=1, J\/Jo=2, andJy+J,=2, with field ran-  distribution for J'/3=J4/Jo=5, Jo+Jy=1.1, with field random-
domnesse$a) o=0.5 and(b) o=0.9. The heavy solid and dashed nessesa) =0 and(b) o=0.15. The heavy solid and dashed lines
lines represent, respectively, continuous and first-order transitiongepresent, respectively, continuous and first-order transition®) In
In (a) these lines meet at a tricritical point represented by a blackhese lines meet at tricritical points represented by black circles
circle. The thin lines delimit shaded regions where the RS solutior{notice that, at high temperatures, such lines do not meet smaothly
is unstable, indicating the onset of the spin-glass and mixedThe thin lines delimit regions where the RS solution is unstable,
antiferromagnetic phases; one notices thagjrsuch lines present a indicating the onset of the spin-glass and mixed-antiferromagnetic
gap across the first-order transition. Our units and phase nomenclghases. Our units and phase nomenclature are as defined in Fig. 1.
ture are as defined in Fig. 1.

calculations match more closely the experimental results, in
which no first-order transition is detectgtb|. However, it is
According to our calculations, the main effect of the ran-possible that the first-order transition may also be eliminated
dom field in antiferromagnetic spin glasses is to decrease th#ithout the inclusion of random fields, by slightly changing
extensions of the antiferromagnetic phases; in the casdbe parameter valuek/J, Jo/Jo, or Jo+Jg [9].
where there is a first-order transition line, the introduction of It should be mentioned that all the results presented above
a random field also decreases the extension of such a lingere obtained within the simplest choice for the order pa-
For a sufficiently large field randomness, first-order transifameters, i.e., the RS solution. Although such a solution is
tions are converted into continuous ones, whereas for a stifalid at high temperatures, it becomes unstable at low tem-
larger randomness, the antiferromagnetic phases disappeggraturegbelow the AT lines drawn in our phase diagrams
The destruction of the first-order transition line in Important low-temperature effects, like phase reentrances
FeMg;_Cl,, due to random fields, was observed recentlyand tricritical points, inside such a region, may change com-

V. DISCUSSIONS

[29]. pletely under a more appropriate choice for the order param-
For a specific application of our results, let us consider theeters[13,14.
effect of the Gaussian random field for the ca¥dJ We emphasize that there are important experimental ob-

=J4/3o=5 and Jy+J,=1.1, which is appropriate to de- servations not captured by our calculations. Experimental

scribe FeMn,_,TiO5 [10]. In the absence of the random Works in the mixed antiferromagnetic ~compound
field (0=0), there is a first-order transition line meeting F&Mn1-xTiO; [15] and in the diluted antiferromagnet
continuous lines at two tricritical points, as shown in Fig. F&ZN-xF [19,22,23 have reported two irreversibility phe-
8(a). Actually, we found numerically that such lines do not "omena, a weak one at higher temperatures, attributed to the
meet smoothly at the putative tricritical point at higher tem-random-field effect, and a stronger one at lower tempera-
peraturegin a region where the RS solution adopted hereinfUres, attributed to the spin-glass ordering. Since the mean-
is stable, determined by the conditiors=1/=0 [with a field theory of thg f(_arromagneu_c random-field Ismg.model
given by Eq.(3.19]. This suggests the occurrence of critical [30,31 does not indicate any kind of glassy phase induced
and bicritical endpoint§11], instead of a tricritical point. Py the random field, it is natural to expect the same limita-
Also shown are the lines beyond which the AT stability con-tion in our mean-field calculations. Presumably, a much
ditions (3.6) and(3.7) are violated, signaling the onset of the More sophisticated approa¢B2—-34 is needed to describe
spin-glass and mixed-antiferromagnetic phases. Our resuloperly the glassy phase associated with the irreversibility
for o=0 are in good agreement with previous calculationsPheénomena observed experimentally.

[10] using the same parameter val(é&x a better compari-
son with the results of Takayama, in Fig. 8 we have inverted
the axes with respect to those of Figs. 4 andWith the
application of a random field witlor=0.15, the first-order The authors acknowledge partial financial support from
transition is converted into a continuous line, while the anti-Conselho Nacional de Desenvolvimento Ciéot e Tecno-
ferromagnetic phases decrease in size, as shown in . 8 logico (CNPg and Fundzao de Amparo aPesquisa do Es-
Thus, the inclusion of a random field makes the theoreticatado de Sa Paulo(FAPESB.
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